|
@@ -56,8 +56,8 @@ def feed_queue():
|
|
|
queue.put(item)
|
|
|
|
|
|
if downloaded_counter:
|
|
|
- log.info('[feed_queue] {} new '
|
|
|
- + 'pending schedule items.'\
|
|
|
+ log.info(('[feed_queue] {} new '
|
|
|
+ + 'pending schedule items.')\
|
|
|
.format(downloaded_counter)
|
|
|
)
|
|
|
|
|
@@ -95,6 +95,8 @@ def process_segment(item):
|
|
|
station = item['station']
|
|
|
date = dateutil.parser.parse(item['date'])
|
|
|
|
|
|
+ log.info('processing segment: {}'.format(item))
|
|
|
+
|
|
|
# 1. obtener el audio desde firebase
|
|
|
# y calcular su fingerprint.
|
|
|
filename, md5hash = cloud_download(ad_key=item['ad'])
|
|
@@ -121,7 +123,7 @@ def process_segment(item):
|
|
|
audios_counter = 0
|
|
|
results = []
|
|
|
for path, name, ts in iterate_audios(date, station):
|
|
|
- print(path)
|
|
|
+ log.info('file: {}'.format(path))
|
|
|
audios_counter += os.path.isfile(path)
|
|
|
for match in dejavu.recognize(recognizer, path, 5,
|
|
|
ads_filter=[md5hash]):
|
|
@@ -148,7 +150,7 @@ def process_segment(item):
|
|
|
missing_files=(12 - audios_counter) \
|
|
|
if audios_counter < 12 else 0
|
|
|
)
|
|
|
- log.info('api response: {}'.format(response))
|
|
|
+ log.info('API response: {}'.format(response))
|
|
|
except ConnectionError as ex:
|
|
|
log.error(str(ex))
|
|
|
except UserWarning as warn:
|
|
@@ -194,7 +196,7 @@ def iterate_audios(dt, station):
|
|
|
- AHEAD_TIME_AUDIO_TOLERANCE
|
|
|
to_time = from_time + 3599 + AHEAD_TIME_AUDIO_TOLERANCE
|
|
|
|
|
|
- log.info('from {} to {}'.format(from_time, to_time))
|
|
|
+ log.info('from {} to {}'.format(int(from_time), int(to_time)))
|
|
|
|
|
|
cursor = db.cursor()
|
|
|
cursor.execute((
|